The preference of tryptophan for membrane interfaces.
نویسندگان
چکیده
One of the ubiquitous features of membrane proteins is the preference of tryptophan and tyrosine residues for membrane surfaces that presumably arises from enhanced stability due to distinct interfacial interactions. The physical basis for this preference is widely believed to arise from amphipathic interactions related to imino group hydrogen bonding and/or dipole interactions. We have examined these and other possibilities for tryptophan's interfacial preference by using 1H magic angle spinning (MAS) chemical shift measurements, two-dimensional (2D) nuclear Overhauser effect spectroscopy (2D-NOESY) 1H MAS NMR, and solid state 2H NMR to study the interactions of four tryptophan analogues with phosphatidylcholine membranes. We find that the analogues reside in the vicinity of the glycerol group where they all cause similar modest changes in acyl chain organization and that hydrocarbon penetration was not increased by reduction of hydrogen bonding or electric dipole interaction ability. These observations rule out simple amphipathic or dipolar interactions as the physical basis for the interfacial preference. More likely, the preference is dominated by tryptophan's flat rigid shape that limits access to the hydrocarbon core and its pi electronic structure and associated quadrupolar moment (aromaticity) that favor residing in the electrostatically complex interface environment.
منابع مشابه
Effect of tryptophan insertions on the properties of the human group IIA phospholipase A2: mutagenesis produces an enzyme with characteristics similar to those of the human group V phospholipase A2.
An important characteristic of the human group IIA secreted phospholipase A(2) (IIA PLA(2)) is the extremely low activity of this enzyme with phosphatidylcholine (PC) vesicles, mammalian cell membranes, and serum lipoproteins. This characteristic is reflected in the lack of ability of this enzyme to bind productively to zwitterionic interfaces. Part of the molecular basis for this lack of activ...
متن کاملFemtosecond studies of tryptophan solvation: correlation function and water dynamics at lipid surfaces
We report here a complete study of solvation dynamics of tryptophan in bulk water with femtosecond resolution and present an accurate method for the construction of its solvation correlation function. The water dynamics was observed in one hundred picosecond ( 108 ps) at lipid–water interfaces while in buffer and salt/buffer solutions it becomes faster in tens of picoseconds ( 7–20 ps). These w...
متن کاملInteractions of tryptophan, tryptophan peptides, and tryptophan alkyl esters at curved membrane interfaces.
Motivated by ongoing efforts to understand the mechanism of membrane protein crystallogenesis and transport in the lipidic cubic phase, the nature of the interaction between tryptophan and the bilayer/aqueous interface of the cubic phase has been investigated. The association was quantified by partitioning measurements that enabled the free energy of interaction to be determined. Temperature-de...
متن کاملMembrane organization and dynamics of "inner pair" and "outer pair" tryptophan residues in gramicidin channels.
The linear ion channel peptide gramicidin serves as an excellent prototype for monitoring the organization, dynamics, and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for establishing and maintaining the structure and function of the channel in the membrane bilayer. In order to address the basis of differential importance of tryptophan resid...
متن کاملA Kinetic Investigation of a Carrier-Mediated Transport through a Bulk Liquid Membrane
The kinetics of the potassium thiocyanate transport mediated by dicyclohexyl-18-crown-6 (L) through a bulk liquid membrane is studied experimentally and theoretically. The proposed model is based on the assumption of a pure diffusion of the complex salt [K·L]+SCN¯ through the liquid membrane stagnant films at the interfaces. It illustrates the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 37 42 شماره
صفحات -
تاریخ انتشار 1998